Detecting time-dependent coherence between non-stationary electrophysiological signals--a combined statistical and time-frequency approach.

نویسندگان

  • Yang Zhan
  • David Halliday
  • Ping Jiang
  • Xuguang Liu
  • Jianfeng Feng
چکیده

Various time-frequency methods have been used to study time-varying properties of non-stationary neurophysiological signals. In the present study, a time-frequency coherence estimate using continuous wavelet transform (CWT) together with its confidence intervals are proposed to evaluate the correlation between two non-stationary processes. The approach is based on averaging over repeat trials. A systematic comparison between approaches using CWT and short-time Fourier transform (STFT) is carried out. Simulated data are generated to test the performance of these methods when estimating time-frequency based coherence. In contrast to some recent studies, we find that CWT based coherence estimates do not supersede STFT based estimates. We suggest that a combination of STFT and CWT would be most suitable for analysing non-stationary neural data. Tests are presented to investigate the time and frequency discrimination capabilities of the two approaches. The methods are applied to two experimental data sets: electroencephalogram (EEG) and surface electromyogram (EMG) during wrist movements in a healthy subject, and local field potential (LFP) and surface EMG recordings during resting tremor in a Parkinsonian patient. Supporting software is available at and .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

A new statistical test based on the wavelet cross-spectrum to detect time-frequency dependence between non-stationary signals: Application to the analysis of cortico-muscular interactions

The study of the correlations that may exist between neurophysiological signals is at the heart of modern techniques for data analysis in neuroscience. Wavelet coherence is a popular method to construct a time-frequency map that can be used to analyze the time-frequency correlations between two time series. Coherence is a normalized measure of dependence, for which it is possible to construct c...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

Using Wavelets and Splines to Forecast Non-Stationary Time Series

 This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 156 1-2  شماره 

صفحات  -

تاریخ انتشار 2006